
$p=$ the prop. of correct hand identifications
a)

$$
\begin{array}{ll}
H_{0}: P=5 & \text { (she's guessing) } \\
H_{a}: P>5 & \text { (shecan tell) }
\end{array}
$$

b) $\hat{p}=\frac{123}{280}=439 \quad \cap p \geq 10 \quad n(1-\rho) \geq 10$
$\begin{array}{lcll}\text { Which hand } \\ \text { Was randomly } \\ \text { chosen, so } \\ \text { cot biased } & \frac{123}{280}(280) \geq 10 & 280(1-123) \geq 10 & 157 \geq 10\end{array}$
c) It makes sense that p-value 7.5 because I was trying to prone that $p>5$, but my

$$
z=\frac{.439-.5}{\sigma_{\hat{p}}}=-2.03 \sqrt{280}
$$ P was less than. 5!.

d) No \rightarrow never "accept" H_{0} $P(z>-2.03)=.9789{ }^{\text {K -value }}$
However, I definitely Do NOT have any evidence against H_{0}, so I fail to reject H_{0}.
e) I have no evil. that the. touch
is effective based on this experiment.
$18-10 \quad \hat{p}=\frac{1783}{2613}=.6824$
a)

$$
.6824 \pm 3.29 \sqrt{\frac{.6824(1-.6824)}{2613}}
$$

$$
(.6524, .7123)
$$

b) Potentially response bias \rightarrow people could have lied a bant voting
c) no, 49 is not in my interval
d) yes \rightarrow people who would claim to have voted instead of actually voted
$e)$
.49 is not in the 99.990 interval, therefore you would reject $H_{0}: p=.49$

$$
.0005+.999+.0005=1
$$

B Practice:
Interment the interval I am 99.9% confident that the actual prop of "Americans that would claim to have voted
is between. 652 and .712
Interpret the conf. level (99.9%)
If I took repeated samples of 2,613 Americans
and created 99.9% conf. int. for each, in the long run, 99.9% of those intervals
would capture the actual prop of all Amer.
Who would claim to have voted.

